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On the characteristics of the equations of motion 
for a bubbly flow and the related problem of critical flow 

A. P R O S P E R E T T I *  and L. V A N  W I J N G A A R D E N * *  

California Institute of Technology, Pasadena, California, U.S.A. 

(Received July 30, 1975) 

SUMMARY 
For the study of transients in gas-liquid flows, the equations of the so-called separated flow model are 
inadequate, because they possess, in the general case where gas and liquid move at different velocities, 
complex characteristics. This paper is concerned with the equations of motion for bubbly flow. The equations 
are discussed with emphasis on the aspects of relative motion and the characteristics are calculated. It is 
found that all characteristics are real. The results are used to establish a relation between gas velocity, liquid 
velocity, void fraction and sound velocity at critical flow. This relation agrees very well with experimental 
data for these quantities as measured by Muir and Eichhorn in the throat of a converging-diverging nozzle. 

1. Introduction 

I t  is common practice in the literature on gas/liquid flows to use the so-called separated 

flow model for which separate conservation equations for each of the constituents are 
written down. When calculating the characteristics of  these equations, a difficulty is en- 
countered because it appears that, when a relative velocity between the phases is allowed 

for, these characteristics are complex. This is discussed e.g. in Wallis [1], Chapter 6. A lively 
debate  on this subject took place during a Round Table Discussion held at the 5th Inter- 
national Heat  Transfer Conference in Tokyo, 1974 [2]. The fact that  characteristics are 
complex makes the Cauchy problem for these equations an ill posed problem. Therefore 
the separated flow model does not seem to be fully adequate for the investigation of  wave 

motion in two phase flows. The physical reason for the complex characteristics presumably 
is, (see the above mentioned Round Table Discussion) that instabilities of  the interface like 

Kelvin-Helmholtz instability are hidden in the model. This means that a initially separated 
flow turns under certain conditions into another topology. In m a n y  cases this new topology 
is a dispersed flow in which the gas is dispersed as bubbles in the liquid. With a view to 
problems such as transients in two phase flows in nuclear reactors, it is of some interest to 
consider the equations of  motion of  a bubbly flow, in particular when the relative velocity 
is appreciable. In this paper  we formulate these equations and calculate their charac- 
teristics. We assume that the pressure in the bubbles equals the local pressure in the liquid. 
This assumption is almost always made in the modeling of  gas/liquid flows. Further we 
assume that the bubbles behave isothermally. Some evidence in support  of  the validity of 
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the model is provided by the favorable comparison with experiment of the critical velocity 
derived from our theory. 

2.  E q u a t i o n s  o f  m o t i o n  

We consider time-dependent flow in the x direction of a mixture of liquid (density Pz, 
velocity u) and gas bubbles (density po, velocity v). Locally the bubbles have all the radius a. 
An extension to a distribution of bubble sizes is possible; here we shall restrict to one 
bubble size, locally. If  the void fraction, that is the concentration of gas by volume, is 
denoted by c~ and the number density by n, we have 

a = ~na3n = n~, (1) 

where z is the volume of a bubble at position x and time t. For most practical applications 
we can safely neglect the contribution of the gas to the density of the mixture, because this 
is significant only for e ~ 1. Denoting the density of the mixture by p, we have therefore 

p = p,(1 - a). (2) 

The pressure Po of the gas in the bubbles is not necessarily equal to the pressure p in the 
surrounding liquid, nor need the temperatures be equal. For acoustic waves in liquid- 
bubble mixtures differences in pressure and temperature give rise to dispersion and damping 
(see e.g. van Wijngaarden [3]). The importance of these effects is small when the charac- 
teristic times of the flow are large compared to the natural period of oscillation of the 
bubbles and to the relaxation time. In the present work we want to investigate the impli- 
cations of relative translational motion between bubbles and liquid and therefore we make 
the most simplifying assumptions where other effects are concerned, viz pg equals p and 
isothermal bubble behavior. It should be noticed that even in the presence of dispersion 
and diffusion, to a first approximation the waves are centered about the characteristics 
determined here. Since both u and v are involved in the formulation of the equations of 
motion, we have two material derivatives, 

d 0 O 
- -  - - 7  

dt Ot + u Ox (3) 

and 

D ~ 0 
- - ,  

D--~ = ~---[ + v Ox (4t 

We assume that the bubbles preserve their identity and do not break up or coalesce, which 
means that the number density n satisfies the conservation equation 

Dn Ov 
- -  + n - -  = o.  (5 )  
Dt Ox 

For an isothermal bubble we have in addition 

D 
D-"t (pz) = O, (6) 
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which gives together with (1) and ( 5 )  

D 0v 
D--t (p~ + po~ Ox O. (7) 

Taking the liquid as incompressible, mass conservation requires with use of (2), 

d Ou 
d-;  (1 - + (1 - = o.  ( 8 )  

I f  v were equal to u, (7) and (8) would give 

D pc~ 
- 0~  

Dt 1 - ~  

which can be regarded as an equation of state and from which a sound velocity, Co say, 
follows as 

Co _ Dp _ p Dp pt~(1 -- a)" (9) 

Now that v 4 u, no relation p = p(p) exists. From (6)-(8) it follows that 

D pa pa O 
- { ( 1  - c O ( v  - u ) } ,  

Dt 1 - a  (1 -c~)  2 c~x 

The derivative in the right hand side cannot be written as a material derivative of a function 
containing p and a only. 

The equation expressing conservation of momentum is 

du @ 
P ~ -  + ~ x  = O, (10) 

with p given by (2). To the equations (7), (8) and (10) an equation for the relative motion 
must be added. We assume that the Reynolds number for the relative motion around an 
individual bubble is large enough for inertia forces to dominate over viscous forces. Then 
the flow, to a first approximation in the reciprocal Reynolds number, can be calculated 
with potential theory and the resistance force is given by -k l ta(v  - u), where k is a con- 
stant (12re for a sphere) and a is the effective radius of the bubble, whereas/t is the dynamic 
viscosity of the liquid (see Landau and Lifshitz [4] and Levich [5]). Since we have potential 
flow around the bubble, we can apply the theorem (see e.g. Landau and Lifshitz [4]) that 
the rate of change of the liquid impulse, given by the product of  relative velocity and virtual 
mass, equals the external force on the bubble. This includes the resistance force, mentioned 
above, and in addition the inertia force pF(Du/Dt). Note that the latter is not pzz(du/dt), 
because it is the acceleration of the liquid observed in a frame moving with the bubbles 
that matters. How to calculate the virtual mass of a body in an unbounded liquid is treated 
in almost any textbook on hydrodynamics. However it is more complicated in the present 
case where the virtual mass of any individual bubble will be affected by the presence o f  the 
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other bubbles. For spherical bubbles and small ~ this dependence on other bubbles can 
according to van Wijngaarden [6] be expressed by, m representing the virtual mass, 

m = 2pzz, (11) 

where 

2 = �89 + 2.7800 + 0(cr (12) 

We shall use (11) and (12) in the following. Then the equation for the relative motion of 
an individual bubble is 

D Du 
D--t 2PtZ(v - u) = P6  Dt - k # a ( v  - u). (13) 

Upon multiplication of this equation with n and of (5) with 2pzz(v - u), addition of the 
results gives with the help of (10) 

o~ D2 8v 
D e ( v - -  u) + + c~(v-- u ) - -  
D--i -2 (v - . )  - N  Ox 

o~ 8p ~(v - u) 8u knva(v - u) 

+ p l2(1- -~)  Ox 2 8x 2 ' 

where v is the kinematic viscosity of the liquid. In order to simplify we write in the term 
for the resistance force na as na3/~ 2, where a is a representative average bubble radius and 

define the relaxation time T as 

4~z2~ 2 
T = (14) 

3kv 

T is a measure for the time which it takes the liquid to decelerate by viscous forces a faster 
moving bubble to the liquid velocity. With this the equation for relative motion finally 

takes the form, 2' denoting d2/de, 

Dt ~2' D~ 8v ct 8p 

c~(v - u) + -~ - (v  - u ) - ~ -  + ~(v - u ) -~x  + p/2(1 - o 0 0 x  

- u )  - u )  
- -  = (15)  

2 8x T 

The set of  equations (7), (8) and (15) still describe the motion of a homogeneous liquid. 
As compared with the case u =  v there is now however an additional internal degree of 
freedom, viz. (v - u). This interpretation is quite fruitful as shown by Noordzij and van 
Wijngaarden [7] in their study of the effect of relative motion on shock waves. 

3.  C h a r a c t e r i s t i c s  

It is convenient to use as dependent variables ~, u, V a n d  p where 

V = v - - u .  (16) 
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Rewritten in terms of  this variable (8), (10), (7) and (15) become, in that order, 

D a  ~ a  Ou 
- ~D t + V -~x + ( 1 - a ) - ~ x  = 0 ,  

Du 3u @ 
p,(1 - ~) -bT - p,(1 - ~)v-=-ox + ~ = o, 

D~ Dp #u OV 
P ~ - + ~  Dt + ~P-Y;x + ~ P ~ x  = ~  

,I Dt D _ _ + " V ~  + " V ~  + 

~V Ou aV 

k ax = T 

@ 
pl(1 - o02 Ox 

To obtain the characteristics of the set of  equations (17)-(20) we write 

D a 
- o" 

Dt Ox ' 

and find upon substitution of  this into (17)-(20) that the a's are given by 

a + V  1 - a  0 0 

0 -p~(1 - ~)(a + V) 0 1 

- a p  up ap - ~ a  = O. 

- - ( t +  a 2 ' \  a V ( l -  - - a )  a 
~ - ) a V  ~ )  ~(V 2p,(l - a) 

Before going on, we render a and V dimensionless with the velocity Co, defined in (9), 

V 

Co 

o- 

co 

Moreover we define 

fl = 1 + 2 -x + (1 - ~)),-12', 

~ =  1 + a ) . - 1 .  

Using (23)-(20, we obtain from (22) 

~{r + ~o) 2 - ~o[~# + (4 + ~o) 2] - ~ }  = o. 

Obviously one of  the roots is ~ = 0, corresponding to 

D 
- 0 .  

Dt 

(17) 

(18) 

(19) 

(2o) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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The three other ones are the roots of the cubic equations in the curly brackets in (27). 
In order to gain some insight into the nature of these characteristics we calculate these for 
the practically important case where q~ is a small quantity. Writing 

= 4o + ~o~1 + ~o2~2 + . . . ,  

we obtain, neglecting terms of order q~2, 

~ + 3 ~ o ~ ,  + ~o~o ~ - ~r - ~ r  - ~ o  = 0. 

Collecting terms of the same order in q~, this gives 

4 o = 0 ,  with { l = - - - ,  
Y 

and 

~o z = y ,  with ~l = - � 8 9  
27 

Returning to dimensional variables we have for the characteristics dx/dt,  from these ex- 
pression and (4), (21), (23) and (24), up to the second order in (v - u)/co, 

--d~-) = v, (29) 
1 

= v - - - ( v  - u ) ,  ( 3 0 )  

(--~)a,4 = l(v + u) + ~ ( v - u )  + (31) 

where 

e: = Y%o. (32) 

c: is the speed of sound in a mixture in which relative motion is not resisted by viscous 
friction (see e.g. van Wijngaarden [3]), whereas Co is the speed of sound in a mixture in 
which viscous forces exerted on the bubbles are strong enough to prevent relative motion. 
It is completely in agreement with the theory of nonequilibrium flow that in the general 
case in which T, in equation (15), is neither infinite nor zero, e: emerges in the expression 
for the characteristics, as here in (31) (see e.g. Wegener [8]). It appears that the terms 
containing (v - u) in (30) and (31) are preceded by ~. Hence when both ~ and (v - u)/Co 
are small and of the same order of smallness, these terms can be neglected and in that case 
(29)-(31) reduce further to 

(33) 
1,2 

a,4 2 
! e: .  (34) 

Particularly interesting are the two characteristics (34), corresponding to the well known 
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"u + c" characteristics in the dynamics of single phase flow. It could be anticipated that 
the convective part would contain both u and v. However, it is rather surprising that, in 
the approximation underlying (34), the convective part in the characteristic speed is just 
the arithmetic mean of these--two velocities. It should be emphasized that this result holds 
for bubbles of any shape, because the shape enters only in the higher order terms, which 
contain the factor 2. 

The results of this section show that the system of equations (17)-(20) is completely 
hyperbolic, so that for these equations the Cauchy problem is a well posed one. 

4. Application to critical flow. Comparison with experiment 

When a single phase flow expands through a Laval nozzle under conditions where the 
reservoir pressure is kept constant but the exit pressure is progressively decreased from the 
reservoir pressure, a maximum in the mass flow from the nozzle occurs when in the throat 
the velocity equals the velocity of sound. This so-called critical flow occurs in two phase 
flows as well and is of technological importance, but the interpretation is less simple than 
in single phase flow because of the different velocities of the phases. For bubbly flows 
obeying equations (17)-(20), we can now predict critical flow from the criterion that in 
that case a stationary wave in the throat is possible, because then a disturbance cannot 
travel upstream from the throat. From (4) and (21) it follows that critical flow occurs when 

Using (23) and (24) we find upon inserting this into the cubic equation in the square bracket 
in (27) and returning to the variables u and v, 

2uZv _ u 3 
= (35)  

+ - 

It can be readily verified that in case (v - u)/cy is a small quantity, this reduces to 

�89 + u)  + (v - u)  = 
7 

which also follows from (31) by putting (dx/dt)4 equal to zero. Equation (35) gives a 
relation between u, v, c~ and c o which should with reasonable accuracy hold in the throat 
of a Laval nozzle. Because of friction the effective throat is always located a little down- 
stream from the geometrical throat, but usually this is a relatively small effect. Experiments 
with bubbly flows through Laval nozzles have been reported by Muir and Eichhorn [9]. 
They measured u, v, Co and ~ in the throat and their data provide us with an opportunity 
to verify equation (35). In Table 1 we have collected the values of u, v and c o for different 
values of c~, as read from figure 15 in reference 9. The values of (Co)th ..... which follow from 
equation (35) for the same u, v, and e are also given in the same Table for comparison. 
In the last column of Table 1 the relative difference with the experimental value (co)~x p is 
given. It appears that this difference is of the order of 10 % and further that systematically 
the theoretical value is smaller than the experimental one. This may be attributed to the 
fact that the flow in the geometrical throat is not yet critical. 
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TABLE 1 

Critical flow conditions. Comparison between the data of Figure 15 of reference 9 
and the present theoretical result, equation (35). Velocities are expressed in m/sec. 

Co, exp -- Co,th 
cr U V Co, exp Co,th ~ ~oo 

Co, exp 

0.08 33.2 40.2 38.2 34.9 8.6 
0.11 31.1 37.5 33.7 32.3 4.2 
0.16 25.0 31.1 29.6 26.1 11.8 
0.18 23.5 29.6 27.7 24.6 11.2 
0.22 21.3 27.7 25.9 22.7 12.3 
0.25 20.1 26.8 24.4 21.6 11.5 
0.30 I8.9 25.3 23.2 20.3 12.5 
0.33 17.7 25.0 22.3 19.6 12.1 

I t  Call be concluded that  the agreement of  the present theory with the experiments o f  

Muir  and Eichhorn is satisfactory. 

5 .  C h a r a c t e r i s t i c  f o r m  o f  t h e  e q u a t i o n s  

In  view of  the hyperbolic nature o f  the system (17)-(20) it is o f  some interest to  pu t  the 

equations in characteristic form. This may  be useful for  numerical computat ion,  and may  

also lead to the identification o f  conserved quantities in special cases. In  this connect ion 

it is particularly interesting to determine whether the analogues of  the Riemarm invariants 
o f  gas dynamics can be constructed for our  system. I t  will be shown that  this is not  possible 

in the general case. 
In  terms of  v (rather than  V) the system (17)-(20) can be written in matrix fo rm as 

OF aF 
A + B = A (36) 

0t 0x 

where A = (alj) and B = (bij) are the matrices 

A = 

B = 

- 1  0 0 

0 p,(1 - ~) 0 

P 0 0 

V(1 + a,V/2) - a  c~ 

- u  1 - ~  

0 pl(1 - cOu 

vp 0 

vV(1 + c~2'],~) - ~ [ v  + V/A] 

0 

0 

0~ 

0 

0 

0 

pc~ 

~(v + v) 

c(v 

~ / [ p K 1  - ~),q 

and the column vectors F = (7~), A = (63 are defined as 

F r = (0~, u, v,p),  A r = ( 0 ,  0, 0, --cW/T) 
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with the superscript T denoting the transpose. Now we wish to form linear combinations 
of the equations (36) such that in each equation all the quantities are differentiated along 
the same direction. To this end we multiply the left-hand side of (36) by a row vector 
L T = (li) and require that 

OFj ~ ~ ~ mk q- C (37) 
li aij ~ 8x  ] \ gt ~x ] i = 1  k = l  

where the quantities li, mk, and C are to be determined. From (37) it follows that 

4 4 

lla~2 = m s, ~ Iibij = Cmj  (38) 
i = 1  i---i 

or, eliminating mj 

4 

~. l~(Ca o - bij ) = 0, j = 1, 2, 3, 4. (39) 
i=1  

It is well known that the condition of compatibility for this linear homogeneous system 
determines the characteristic directions, and indeed it is easily shown that the condition 
detlCaij - bij] = 0 is equivalent to Eq. (22) with C = o- + v, in agreement with (21). 
In terms of C, Eq. (27) is 

( C  - v){C 3 - (u + 2v)C z + (4uv - u 2 - ve2)C + 

+ u a - 2uZv + [~flu + (y - ~/?)V]eo z} = 0. (40) 

Solving now (39) for the li's and determining the mrs  from either one of Eqs. (38), it is 
readily proven that the system (36) is equivalent to the following four equations 

p V ( C j  - v - o~V2'2-1)Dj~ + po~(C s - u )Djv  

+ ~(Cj - u)[pz(1 - cO(C s - v)(Cj  - v - V)  - p ( 1  + 2-1)]Dju 

+ c~(Cj - u ) (Cj  - v - V ) D j p  = - ~ T - ~ V p ( C j  - u), y --- 1, 2, 3, 4, (41) 

where 

8 8 
Dj  = ~ + Cj  Off 

with the Cfs  the four roots of  the characteristic equation (40). The first equation of the 
system (41), corresponding to the root C1 = v, is nontrivial only if v # u and is 

- p V 2 ' 2 - ~ D l c ~  - p(1 + 2 - 1 ) D l u  + p D l v  - V D l p  = - T - l p V ,  (42) 

which can also be written more compactly as 

2 ' 2 - 1 V D ~  + 2 - 1 D x u  + p D l ( V / p )  = - T - ~ K  (43) 

It is evident that in general one cannot find a function R(e, u, v, p,  x,  t) such that this 
equation can be put into the form 

dR  dx  
- -  f ( ~ ,  u,  v,  p ,  x ,  t )  o n  - - = v  

dt dt 
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and indeed it is very easy to give a fo rmal  p r o o f  of  this fact. The  non-existence of  the 
funct ion R in general precludes the possibili ty of  finding R iemann  invariants  (or ra ther  
R iemann  variables) for  the entire system (41). 

In  view of  the complicated analytic expression of  the other  three roots  o f  (40) it is not  
possible to put  the remaining equations of  the system (41) in as simple a fo rm as that  o f  
Eq. (42) or (43). However ,  the integrat ion of  (41) along the characteristic directions can be 

pe r fo rmed  numerically. 
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